Introduction to Biological Psychology Part III Chapter 6 Psychopharmacology How do Drugs Work on the Brain

Explore the Introduction to Biological Psychology Part III Chapter 6 Psychopharmacology How do Drugs Work on the Brain study material pdf and utilize it for learning all the covered concepts as it always helps in improving the conceptual knowledge.

Subjects

Social Studies

Grade Levels

K12

Resource Type

PDF

Introduction to Biological Psychology Part III Chapter 6 Psychopharmacology How do Drugs Work on the Brain PDF Download

i 237 . HOW DO DRUGS WORK ON THE BRAIN ?

Bryan Singer Learning Objectives To gain knowledge and understanding of how drugs enter the body and the time course of their effects To gain a basic understanding of how general classes of drugs interact with neurons to alter their function .

238 Having learnt about how neurons in the brain communicate , let now consider how drugs can affect their function . In a fictional example , Sam has both high cholesterol and attention hyperactivity disorder ( To help alleviate their symptoms , the prescribes them to lower their cholesterol , while a psychiatrist prescribes to help improve their attention . Both and are considered drugs . Researchers who design drugs and investigate how they act on the body are often called ( they study pharmacology ) While a general pharmacologist might explore the use of or , someone who researches might be more interested in understanding how can reduce symptoms of . These scientists don just develop drugs or observe changes in symptoms after administration they also ask various other questions ! For example , a may consider the following ' What parts of the brain does a drug act on ?

Does a drug have its effect because it interacts with a receptor type ?

How does the administration of a drug impact brain biology ?

After a drug is taken , how long do its effects last ?

Can a drug chemical structure be changed so that its i 239 effects can be prolonged ?

Would taking medicine in a certain way ( oral nasal ) Exercise improve the drugs ability to act on the brain ?

Could brain biology explain why there is individual can you think variation in the capacity of of other drugs to ameliorate certain conditions ?

questions thata Building on your knowledge of neurobiology , this chapter will explore the concepts needed to investigate ?

understand how a might approach addressing these questions . Classifying drugs Before exploring how drugs act on the body and brain , we need to clarify how we refer to different drugs it can be confusing because certain compounds can go by different names . For example , a may describe as a ( or a ) a reuptake inhibitor . In contrast ,

240 a chemist might refer to the drug by its chemical structure . Furthermore , might be prescribed by a psychiatrist as Ritalin and referred to by the UK government ( 2022 ) as a Class controlled substance ( which has severe penalties for illegal possession and intent to supply ) While the following is likely not an exhaustive list of methods to categorise drugs , they can broadly be referred to in the following ways ' Source ' Chemical structure ' Relative mechanism of action in the brain ' Therapeutic use or effect ' Marketed names ' Legal or social status We will now focus on three of these categories that you are likely to encounter in your studies of biopsychology . by source

241 Fig . poppy , with milky latex sap oozing from a recent cut Drugs come from Various places some are naturally occurring , while others are created in the laboratory . Cocaine ( is an example of a naturally occurring drug 242 i because it is directly extracted from the leaves of the coca plant . Opium is also naturally occurring , taken from the unripe seed pods of the opium poppy . In other words , all the molecules that give cocaine and opium their psychoactive properties are already present in the plant itself . drugs are chemically derived from naturally occurring substances . An example of a drug is heroin ( a molecule of morphine , the main active ingredient of opium ) The drug lysergic acid ( is also , originally derived from the grain ergot Fungus . Finally , some drugs are entirely synthetic , made from start to in the laboratory . Methadone , amphetamine , and ( or ecstasy ) are all examples of synthetic psychoactive substances . Relative mechanism of action in the brain We will discuss the details of how drugs might act in the brain in the pharmacodynamics section ( Section ) For now , it essential to understand that certain drugs can have very similar molecular targets in the brain .

243 I ) oo ( mu Fig . Similar chemical structures for different opioids For example , opium ( natural ) heroin ( and methadone ( synthetic ) all act on opioid receptors in the brain . Therefore , these drugs might be considered variations on a theme . Despite their overall affinity for binding to opioid receptors , it important to remember that the biological and psychological effects may still differ . There are different types of opioid receptors ( and these might be differentially located across the brain ) and certain opioid drugs might bind to some of these receptors more readily than others . These drugs may also differ in terms of how quickly they reach the brain after being administered , as well as how fast they are eliminated from the body ( see , below ) It also crucial to remember that the brain does not express opioid receptors with the sole purpose of mediating the effects of drugs like methadone or heroin . The body already has

244 endogenous opioids circulating in regions of the nervous system these molecules play essential functions , like enabling us to feel pain and pleasure and helping to regulate our respiration ( Le et , 2009 Corder et , 2018 ) In contrast , drugs are exogenous compounds that originate outside the human body . Therapeutic use or effect Drugs can also be according to their biological , behavioural , or psychological effects . Drugs that target opioid receptors treat pain and are therefore called . Drugs that excite the central nervous system ( and make us more alert are called stimulants ( cocaine , amphetamine , nicotine ) In contrast , substances with the opposite effect are ( alcohol , Some types of hallucinogens ( mescaline , psilocybin ) and psychotherapeutics ( antidepressants like and ) are drugs that alter psychological states . It is also possible that some drugs can fall under different categories or are otherwise unclear what type they belong to . Ecstasy ( has a chemical structure like the stimulant amphetamine , yet it also can have hallucinogenic effects . Ecstasy is also sometimes referred to as an because of the emotional state of relatedness , openness , or sympathy that it can create ( Nichols , 2022 ) For all of these drugs , the effects and potential

I 245 therapeutic use depend on how much and by what method they are administered .

246 I Absorption Metabolism Lumen Mucosa Fig . Overview of is a of pharmacology that studies how drugs 247 are absorbed by the body , distributed , and ! excreted from the body . Thinking about the journey a drug goes on may be helpful to understand these concepts . A drug might first enter the body from a variety of routes . Nicotine , For example , could be smoked in a cigarette or taken via a patch applied to the skin . For this module , the effects of nicotine that we are most interested in studying are those happening in the brain . We will review how drugs like nicotine get to the brain . Finally , you will learn how drugs , as well as their metabolites , can be removed from the body in urine .

248 Fig . Time course of drug effects . parameters ( maximum serum concentration area under the curve clearance ) highest level ( Next , during the elimination phase , the concentration of Based on the example timeline shown ( left ) for nicotine , we can plot the concentration of a drug in the body ( Figure ) When a drug is initially administered , the concentration in the body increases ( absorption phase ) Then , at a particular ( the reaches its concentration the drug in the body decreases this happens because the drug is both and excreted . At some point , the level of the drug decreases so that it is half the value of the amount of time it takes to reach this point is the drug life (

I 249 Absorption and distribution Several factors how quickly a drug is taken up ( absorbed ) by the body . Perhaps the most obvious is how the drug is administered . Several and invasive methods for drug administration are shown in Table .

250 Method Administration Oral Sublingual Nasal Rectal Transdermal Inhalation Into the mouth Under the tongue Absorption through blood capillaries lining nasal cavities Like oral , but can be done in unconscious individuals because it doesn require swallowing On the skin via a patch Into the lungs , which have a large surface area and are highly In Methods of Drug Subcutaneous Intramuscular Intravenous Epidural Under the skin , but not into the muscle Into the muscle Directly into the vein , so directly into the body bloodstream Into the space between the dura mater and vertebrae , used in spinal anaesthesia Injections methods primarily used in animal ( in rodent model of mental health ) Intraperitoneal Intracranial Injection into the peritoneal cavity surrounding the intestines Injection into either the tissue ofa brain region or ventricle since these drugs are injected into the brain , they do not need to access the body circulatory system

251 Table . Routes of administration With so many injection methods , how is the best method for delivering a drug determined ?

It turns out that there are many factors that decision . Intravenous ( IV ) infusions might be the quickest to enter the body , but a drug administered via this route might have the shortest length of action in the body ( a short quickly into and out of the body ) So , an IV administration of an analgesic might lead to rapid pain relief , but the effect might not last for long . Plus , some people are afraid of needles , and training is required to administer IV injections . Thus , IV injections do not allow patients to care for themselves independently .

252 I LOGY Plasma Concentration of Drug as a Function of Response Time Route of administration oral IM ( intramuscular ) IV ( intravenous ) Plasma Concentration of Drug Time Fig . On this graph , represents the time at which a drug dose is administered . The curves illustrate how plasma concentration of the drug changes over intervals of time ( ti through ) As the graph shows , when a drug is administered intravenously , the concentration peaks very quickly and then gradually decreases . When drugs are administered orally or intramuscularly , it takes longer for the concentration to reach its peak . Perhaps on the opposite end of the administration spectrum from IV injections are oral administrations . Most individuals can swallow medications , so this method ensures a level of independent care . Unlike IV administration , however , drugs do not immediately enter the bloodstream when taken

253 orally . Therefore , the desired effects of medications swallowed are slower than drugs administered through IV injections . Further complicating this is that drugs taken by the oral route are absorbed through the gastrointestinal system , and not by the mouth . This has two primary consequences . First , drugs can initially be destroyed by stomach acids , limiting the maximum effect a drug can have ( for a medication , might be higher after IV than after oral administration ) Furthermore , the stomach environment is constantly changing ( especially after meals ! impacting how much of the drug eventually reaches other parts of the body . Also , after exiting the stomach , drugs enter the liver , where they undergo metabolism this can further destroy orally administered medications , reducing the concentration of the drug that reaches the rest of the body . That said , some medications ( are designed in a certain way so that a person initially swallows an inactive ( 2010 ) When the undergoes metabolism , it is converted into the active drug ( the amphetamine ) that can later impact brain function . A few other vital implications of drug administration routes impact how quickly and for how long drugs have their effect . If a drug is administered into an area of the body with a large surface area and a high level of blood circulation ( the lungs ) then the drug can enter the bloodstream quicker and be faster at having its desired impact . In contrast , a drug would be much slower to act , and potentially work for a longer duration ,

254 if it first needs to cross several cell layers before eventually arriving at a blood vessel ( transdermal delivery ) Furthermore , depot binding might occur if drugs become sequestered into inactive sites of the body where there are no receptors for them to bind to ( in fat stores ) these fat stores may slowly release a drug or its metabolites , further prolonging their actions on the body . If not injected via the IV route , drugs can be slow to enter the circulatory system because they need to pass through various membranes before entering the bloodstream ( stomach , capillaries , While some endogenous compounds have the luxury of helper proteins designed to transport the molecule across the membrane , exogenous drugs usually do not have this mechanism . Instead , drugs most often from high areas of concentration to lower regions ( via their concentration gradient ) and eventually cross membranes they encounter simply through passive diffusion . Since our body membranes are made of lipids ( a lipid ) the ability of drugs to pass through membranes is determined by their lipid solubility and ionisation .

I 255 MEMBRANE ' SIZE OF DRUG OF LIPID SOLUBILITY MOLECULE MOLECULE OF MOLECULE . Fig . Drugs passing through membranes , most drugs are either weak acids or bases . When a drug is dissolved in a solution , it becomes ionised ( charged ) The more a drug is ionised , the less it becomes , decreasing its ability to cross cell membranes . In general , drugs that are acids are less ionised in more acidic solutions , while drugs that are bases are less ionised in more basic solutions . So , for example , the drug aspirin is a weak acid . If aspirin is taken orally in a tablet , it goes to the stomach . The stomach is strongly acidic ( so aspirin remains primarily in its form . Because it is and thus

256 soluble , aspirin can pass through the stomach lining and enter a blood vessel . Blood , however , is slightly basic ( this would result in aspirin becoming ionised , making it less likely to leave the vessel because it more challenging to cross membranes ( it now less ) The situation where a drug is stuck in a compartment because it is highly ionised and low in lipid solubility is called ion trapping ( Ellis and Blake , 1993 ) Concentration gradients can rectify ion trapping the high concentration in one bodily compartment compared to a neighbouring compartment can encourage the drug to move across membranes to the lower concentration region . Various formulas are used to calculate drug diffusion but are beyond the scope of this module . Finally , for drugs to enter the brain , as you ve read about elsewhere , they must first cross the barrier ( Drugs that are can most easily pass through the . So , for example , because heroin is more than morphine , it can more quickly pass through the and arrive in the brain ( et , 2020 ) Therefore , heroin tends to be faster acting than morphine this may contribute to its addictive qualities . Patients use prescribed medications to improve mental health because the drugs impact brain function . However , as described above , delivering drugs directly to the brain is challenging . Because drugs spread across our body via the bloodstream , they act in the periphery before reaching the brain this can lead to unwanted side effects . Thus , part of the

257 job of a is to develop medications that can improve mental via their actions on the brain while minimising undesirable and unwanted effects . Metabolism and excretion We have already discussed one way of drugs pass metabolism in the liver , where enzymes can break down medications into simpler compounds . Through , the liver can metabolise drugs so that they are more ionised this causes them to lose their lipid solubility , further preventing them from crossing the to enter the brain . Finally , drugs are primarily excreted by the body via the kidney ( urine ) but other excretion products include bile , faeces , breath , sweat and saliva . Special enzymes in both the blood and the brain can also break down drugs . For example , when in the brain , heroin can be into morphine . This raises an important example drugs can be into molecules that are also biologically active . While morphine and heroin might have similar effects , the metabolites of other drugs can have opposing effects . For example , alcohol is into acetaldehyde via the alcohol dehydrogenase enzyme ( Figure ) If acetaldehyde accumulates in the body , it can make a person feel sick . Acetaldehyde itself is by aldehyde dehydrogenase into acetic acid . There are drugs for alcohol use disorder that block aldehyde dehydrogenase (

258 I thereby resulting in increased levels in the body ( et , 1997 ) Because the effects of are unpleasant , it is believed that the administration of this drug might prevent people from drinking alcohol in the first place . While this might sound useful , compliance with this treatment is often an issue ( et , 2016 ) AD Ethanol Acetate ( NAD 02 mop mo Fig . Metabolism of alcohol Finally , there is also individual variation in metabolism , For example , there might be sex differences in levels of certain enzymes . Women may have lower levels of gastric alcohol dehydrogenase than men so for a given dose of alcohol , more alcohol enters the bloodstream ( et , 1990 ) There is also individual adaptation chronic drinkers have higher levels of alcohol dehydrogenase . In this example , someone with an alcohol use disorder might need more alcohol

I 259 than someone else to achieve the desired effects of alcohol this is an example of tolerance resulting from a state of enzyme induction ( increased rate of metabolism due to enhanced expression of genes for enzymes tolerance is discussed again later in this chapter ) Age also impacts metabolism older individuals have reduced liver function , and this might lead to exaggerated alcohol effects ( Meier , 2008 ) Finally , genetics can impact metabolism as well some individuals have a polymorphism in the gene encoding aldehyde dehydrogenase lack of this enzyme means there a greater accumulation of acetaldehyde and thus more of its unpleasant effects ( Agarwal , 1987 ) Pharmacodynamics While focuses on how a drug spreads across the body and is eliminated , pharmacodynamics studies the effect a drug has once it reaches its target in the body . So , while explains how a drug eventually passes through the to get to the brain , pharmacodynamics describes what type of receptor a drug binds to in the brain and what consequence this has on neuronal signalling . Notably , while this example discusses a drug targeting a receptor , medicines can interact with many different types of molecules in the brain , impacting brain function in numerous ways . The below gives a few examples of how a drug can affect synaptic transmission . Once again , it crucial to recognise that

260 I drugs are acting on cellular mechanisms that already exist to help us survive . For example , nicotine binds to an receptor that usually binds the neurotransmitter acetylcholine . This particular receptor also binds nicotine , so we call it the nicotinic acetylcholine receptor . vane mans or we A was me us am or use In non ulna or ' A ' shine so we A mam ma scams Fig . Sites of drug action Agonist drugs and curves Throughout this and future modules , you will learn about many different types of drugs and their impact on brain biology . For now , we will focus on two general kinds of drugs

261 and antagonists that bind to receptors . Receptors are molecules that a drug ( or an endogenous ) bind to and initiate a biological effect . Receptor is a very general term we often think of receptors as proteins that are inserted into the membrane of cells , but this does not have to be the case ( receptors can also be in the cytoplasm , for example ) Some examples of where receptors can be located are shown in Figure . For example , receptors can be found on neurons ( nicotinic acetylcholine receptors ) and on synaptic terminals ( known as , which help regulate neurotransmitter release , the dopamine receptor ) Drugs are often not limited to binding one particular receptor they are often considered dirty , binding to multiple types of receptors to varying degrees across the body . This is one reason why drugs often have unwanted side effects . Second generation antipsychotic medications are notorious for impacting multiple types of receptors , and this may be why there is individual variation in their tolerability ( et , 2019 ) Drugs that are considered can bind to a receptor and initiate some type of biological effect , such as turning on an intracellular cascade of signalling events . Because of this , we often think of as working via a mechanism inserting a drug into a receptor enables events to occur ( see Figure , top ) It is critical to recognise that drugs tend to bind to receptors weakly and can rapidly dissociate from the receptor . Therefore , the acute impact drugs have is

262 reversible , This is important because when a drug is no longer bound to a receptor , the endogenous for that receptor can once again bind . ma ox I mane we mama Iu mama Fig . Interactions between drugs or and their receptors How much biological impact a drug has on the brain is , in part , dependent upon the number of receptors that are available to bind the drug . Therefore , increasing the number of drug molecules in the brain will also increase the probability of binding to a receptor . While larger doses of a drug can have a more impact on biology , there is always a limit . The maximum effect of a drug is achieved when the drug is continuously bound to all receptors that is , a drug reaches its

263 maximal effect when all receptors are occupied this is known as the law of mass action and can be described by a ' EFFECT ( 36 OF 10 1000 10000 DRUG CONCENTRATION Figure curve As you can see from Figure above , curves have a typical . They are usually plotted with a logarithmic function of dose of drug administered on the axis and a measured response on the . Looking at the , you can see that at some point , increasing the dose of the drug no longer produces a bigger response at this point ( known as effective dose 100 , the drug is occupying all of the available receptors and therefore is having its maximum effect . Another important point on the graph is the for

264 I the drug . is a measure representing the dose that produces half of the maximal effect . Alternatively , can characterise the amount of a drug that produces an effect in half of the population to which it was administered . Finally , it is also crucial to remember that most medications have various effects on the body and can even interact with multiple receptors . Binding to Receptor A might impact pain perception , while binding to Receptor might impact blood pressure . If Receptor is more prevalent than Receptor A , then the dose required to affect blood pressure maximally would be higher than that to alter pain perception . Accordingly , there would also be a different value for each response . Drugs often have side effects that are either undesirable or dangerous curves can also be used to characterise these effects . For example , one unwanted effect of a drug is sedation . The dose of the medicine that produces this effect in 50 of subjects is referred to as the toxic dose 50 ( Using this information , doctors can calculate a margin of safety , known as the therapeutic index ( or therapeutic window ) which indicates how much the dose of a drug may be raised safely . Just as drugs might have multiple desirable effects , there may also be numerous toxic effects , each with a different . Finally , in the therapeutic index formula , can be substituted with the lethal dose 50 ( which is the dose of a drug that can kill 50 of subjects .

265 Comparing curves of agonist drugs Up until now , we have primarily discussed the efficacy of drugs the maximum effect they can produce . Drugs also differ in potency how much medication is needed to produce an effect . Figure shows curves for three opioid drugs with similar , morphine , and codeine can all effectively reduce pain . However , different doses of these drugs are required to relieve pain a higher concentration of codeine is needed for pain relief than morphine . Because of this , the of each of these drugs are also different . Drugs with a lower are considered more potent than drugs with a higher . CURVES FOR ?

ANAL awe More woven Lu man we saw vo ?

um i vo we near I MAXIMUM ' a Man I i Qe i OVEN , You i as av nos me is i A is i am . rows , am A as sci ME NE was Figure . Comparing efficacy and potency of analgesic drugs 266 The also displays the curve for aspirin , a drug that can be used to reduce pain . Not only is a higher dose of aspirin required to reach similar levels of pain relief compared to opioids like morphine , but pain can also not be entirely relieved by any close of aspirin . So , aspirin is both less potent and less for relieving pain than morphine . There are likely several reasons For these differences in potency between drugs . For example , the are likely different between medications if one drug has an enhanced ability to cross the , then more molecules of that drug will bind receptors , and that drug will have supreme efficacy . In addition , some drugs might have a greater for receptors than other drugs a drug with higher affinity will likely stay bound to the receptor For a more extended period and thus keep on having an effect . Differences in the efficacy of drugs likely signify that those medications work through different mechanisms . While both morphine and aspirin relieve pain , morphine works by binding opioid receptors , and aspirin instead the enzyme . Antagonist drugs Agonist drugs binding to receptors can cause a biological response as such , they are said to have intrinsic activity . In contrast , antagonists bind to receptors and counteract either an agonist or endogenous effect on a receptor .

267 Therefore , one can measure the effectiveness of an antagonist by observing how its administration impacts the curves of agonist drugs . Unlike agonist drugs that follow a lock and key mechanism to initiate biological effects ( Figure , top row ) it may be helpful to imagine an antagonist as a key that into a lock but does not turn ( Figure , bottom row ) awe AGONIST RECEPTOR INTERACTION no ANTAGONIST INTERACTION Figure . Action of agonist drugs ( top ) and competitive antagonists ( bottom ) There are a couple of categories of antagonists that you should be familiar with ( Figure ) Competitive antagonists bind to the same site on a receptor as an agonist or endogenous

268 . Because of this , this type of antagonist compete with the endogenous for available binding sites . Therefore , a higher dose of the agonist drug would need to be administered to the presence of an antagonist this would shift the of the agonist curve to the right . Theoretically , if there is so much agonist that absolutely no antagonist molecules can bind to a receptor , and if the agonist occupies all available receptors , then the agonist can reach the same as in the absence of an antagonist .

269 A ) COMPETITIVE no 90 ID OR CONCENTRATION ) NONCOMPETITIVE ANT AGONIST nu 10 . OR CONCENTRATION Figure Competitive ( A ) noncompetitive ( antagonists 270 I Unlike competitive antagonists , bind to a different part of a receptor than an agonist or endogenous therefore , they do not compete for binding . In effect , antagonists make receptors unavailable for agonist drug action . While antagonists still shift the curves of to the right ( Figure ) they can also decrease the maximum possible effect an agonist or endogenous has ( they reduce the ED 100 ) Because antagonists bind to different receptor sites as agonist drugs , simply increasing the dose of an agonist can not overcome this blockade . When discussing , we mentioned that most drugs form weak bonds with receptors . This means that the effects of the drug are reversible because the drug can easily dissociate from a receptor . Most antagonist drugs work similarly , and their interaction with receptors is temporary . However , the effects of some antagonist drugs are they form a bond with receptors . One example of such an antagonist is ( from banded krait venom ) which blocks acetylcholine receptors at neuromuscular junctions . This can result in paralysis , respiratory failure , and death . However , there is a hypothetical scenario to overcome the effects of irreversible antagonists synthesising new receptors . Suppose enough new receptors are formed and become functional , and the irreversible antagonist is no longer in the system ( it has been eliminated via urine ) In that

271 case , these new receptors can begin to restore biological function ( when they bind or endogenous ) Other types of There are three other types of agonist drugs you may encounter in your studies . First , indirect ( or ) can bind to a different receptor part than a ( regular ) Full agonist or endogenous . These indirect help full , or endogenous , have their full effects . are an example of an indirect agonist because they bind to receptors , and they enhance the channel conductance when ( the endogenous ) is also attached . Second , partial bind to the same receptor site as agonist drugs , but they have low efficacy ( Figure ) Therefore , a drug as a partial agonist is relative the response to a partial agonist must be less than the maximum response produced by a Full agonist . Importantly , when both full and partial are administered simultaneously , they compete for the same receptor binding site . In this scenario , because the partial agonist is less effective at producing a biological response , it the effect of the Full agonist . In other words , it is impossible For the body to produce a full response to the agonist because partial ( which are less efficacious ) occupy the sites . Such an effect can be overcome by increasing the dose of a full agonist ,

272 allowing it to the partial agonist for binding to receptor sites . Because of these effects , partial are sometimes called mixed drugs . Full 75 Percent 50 Response From 25 Neutral antagonist Inverse agonist Figure . Agonist comparison The type of drug we will discuss is the inverse agonist . Some receptors in the body have substantial endogenous activity , even when are not bound to them . This observation breaks the general rule that receptors have no activity when they are not bound to a . Inverse reduce this spontaneous activity , resulting in a descending curve ( Figure ) Although their mechanism is complex , some alkaloids are considered inverse . alkaloids bind to

273 receptors at the same site as . While facilitate chloride conductance through the receptor channel and decrease anxiety , alkaloids have the opposite effects when administered ( Evans , 2007 ) The effects of these inverse lead some people to call them . By contrast , drugs that are competitive antagonists at the receptor do not the receptor function on their own , but instead block the ability of full , partial , or inverse to alter the receptor activity . Effects of repeated drug use If an individual is repeatedly administered a dose of an agonist drug , then the ability of the drug to exert effects on the body might change . If the drug effects get smaller , this is known as tolerance . So , if an individual has developed tolerance to a particular drug , then the dose of the drug might need to be increased so that the drug is still efficacious . Sometimes , drug effects get bigger and bigger with repeated administrations this is known as or . Because drugs can have multiple effects on the nervous system and behaviour , some drug responses may undergo tolerance , while others are . For example , repeated administration of amphetamine can result in tolerance to the effects of the drug , but

274 I to psychomotor or impacts . Exercise To help you think about these concepts , try drawing curves for the development of tolerance and . Remember that , with tolerance , more drug is required to get the same effect In contrast , with less drug is needed to get the same effect . Because certain drugs target similar receptors in the nervous system , sometimes happens , where one drug also reduces the effects of another drug . For example , alcohol drinkers might be less affected by since the impact of both types of drugs are dependent upon transmission and the expression of receptors ( Le et , 1986 ) Mechanisms underlying drug might be a bit less studied than tolerance . One example , however , of is the ability of certain drugs ( like amphetamine ) to increase levels of the neurotransmitter dopamine across

LOGY 275 administrations ( Singer et , 2009 ) You will learn more about drug tolerance and when studying addiction . Summary Key Takeaways Multiple classification systems for drugs exist involves the absorption , distribution , and elimination of drugs from the body Pharmacodynamics involves how drugs interact with receptors and alter the functional state of the receptor . In this chapter , you have learned about different categories of drugs and how they impact the body through and pharmacodynamic processes ( Figure ) Entire modules are often devoted to pharmacology , and many of the concepts we described can be further

276 I Via mathematical formulas , allowing for precise drug comparisons . As you study different psychiatric conditions and their biomedical treatments , be sure to refer to this chapter to help you understand how medications can be used for many individuals to improve mental wellbeing , body sin and . ma Compliance and , i , me ( body . and of his elimination of . in ii We . pharmacological ! Ii ) Physiological ( age renal ( an Pathological ( mmy . mi ( iii ) Genetic ' my i ) in ( in ) Fig Summary of factors influencing drug action References Corder , Castro , 2018 ) Endogenous and exogenous opioids in pain . Annual of , 41 ,

277 Ellis , Blake , 1993 ) Why are drugs so variable in their efficacy ?

A description of ion trapping . of the , 52 , Evans , A . 2007 ) Pharmacology of the , a partial inverse agonist at the benzodiazepine site of the A receptor neurochemical , neurophysiological , and behavioral effects . Drug , 13 ( di , Terpin , Lieber , 1990 ) High blood alcohol levels in women . The role of decreased gastric alcohol dehydrogenase activity and metabolism . The New England journal of , 322 ( NE , Agarwal , 1987 ) Polymorphism of aldehyde dehydrogenase and alcohol sensitivity . Enzyme , 37 ( Hagi , Kane , 2019 ) effectiveness of oral generation antipsychotics in patients with schizophrenia and related disorders a systematic review and of direct comparisons . 18 (

278 , 1986 ) Tolerance to and among ethanol , pentobarbital and . Pharmacology , and , 24 ( Le , Becker , 2009 ) Reward processing by the opioid system in the brain . 89 , 2010 ) a stimulant for the treatment of in children and adults . 15 , Meier , 2008 ) Age , alcohol metabolism and liver disease . Current in and Metabolic Care , 11 ( 2016 ) Current and mechanisms of action in the treatment of alcohol dependence . 49 ( Nichols , 2022 ) How the name for a novel class of psychoactive agents originated . Frontier in , 13 , Doke , 2020 ) Effects of drugs of abuse on the barrier

279 A brief overview . Frontier in Neuroscience 14 , Singer , Li , 2009 ) changes in dendritic morphology in rat forebrain correspond to associative drug conditioning rather than drug sensitization . 65 ( 10 ) UK Government ( 2022 ) List of most commonly encountered drugs currently controlled under the misuse of drugs legislation . Accessed 13 Dec 2022 ) government , Johnson , Mays , 1997 ) Inhibition of aldehyde dehydrogenase by and its metabolite methyl sulfoxide . Pharmacology , 53 , 96 )

280 About the Author Bryan Singer UNIVERSITY OF in Bryan Singer is a lecturer in the School of Psychology at the University of ( Brighton , UK ) Bryan lab is part of the highly collaborative Behavioural and Clinical Neuroscience group . He is the Director of the Addiction Research and Intervention Centre ( and a member of Neuroscience . Bryan also has an Associate role at The Open University ( UK )